Received 11 December 2002 Accepted 23 December 2002

Online 10 January 2003

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Radovan Černý^a* and K. Alami-Yadri^b

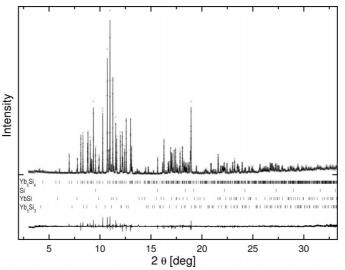
^aLaboratoire de Cristallographie, Université de Genève, 24, quai Ernest-Ansermet, CH-1211 Genève 4, Switzerland, and ^bDépartement de Physique de la Matière Condensée, Université de Genève, 24, quai Ernest-Ansermet, CH-1211 Genève 4, Switzerland

Correspondence e-mail: radovan.cerny@cryst.unige.ch

Key indicators

Powder synchrotron study T = 293 K Mean σ (Si–Si) = 0.016 Å R factor = 0.074 wR factor = 0.096 Data-to-parameter ratio = 0.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.


Orthorhombic Yb₅Si₄ from synchrotron powder data

Orthorhombic Yb₅Si₄ (pentaytterbium tetrasilicide) crystallizes with the structure type Sm₅Ge₄. However, the two compounds differ in the coordination of some Si (Ge) atoms. Each Si atom in the structure of Yb₅Si₄ forms one covalent bond with another Si atom (Si–Si distances of 2.45–2.47 Å), in contrast to Sm₅Ge₄, where only half of the Ge atoms are covalently bonded to another Ge atom (Ge–Ge distance of 2.658 Å).

Comment

During studies of the electronic properties of phases from the Yb–Si system (Alami-Yadri, 1997), a new compound, Yb₅Si₄, was synthesized, and the structure-type Sm_5Ge_4 (Smith *et al.*, 1967) was identified from a comparison of lattice parameters and observed (Guinier films) and calculated (Sm_5Ge_4 structure type) intensities. This compound was reported by Palenzona *et al.* (2002) as novel in the Yb–Si system. However, no refined atomic parameters were given. Our Rietveld refinement using synchrotron data (Fig. 1) confirms that Yb₅Si₄ is isopointal with Sm_5Ge_4 .

The structure can be best described as a stacking of three types of (0y0) slabs: slab A (Fig. 2) at y = 0.25, 0.75 is flat and is formed from a 3^2434 net of Si atoms centred by a 4^4 net of Yb atoms. Slab B (Fig. 3) at $y \sim 0$, 0.5 is puckered and is formed from a 6^3 net of Si atoms. Slab C (Fig. 4) at $y \sim 0.10$, 0.40, 0.60, 0.90 is puckered and is formed from a 3^2434 net of Yb atoms, similar to the net of Si atoms found in slab A.

Figure 1

Observed (circles) and calculated (solid line) intensities for Yb_5Si_4 . Ticks indicate from top to bottom the positions of Bragg peaks of the main (Yb_5Si_4) and impurity (Si, YbSi, Yb_5Si_3) phases. The difference pattern appears below.

© 2003 International Union of Crystallography Printed in Great Britain – all rights reserved

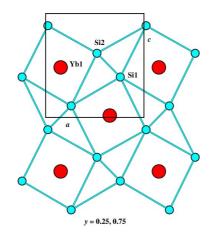
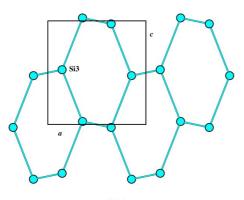



Figure 2

The structural slabs (0y0) of Yb₅Si₄ viewed along the *b* axis: *A* at y = 0.25, 0.75.

Figure 3 $y \sim 0.05$ The structural slabs (0y0) of Yb₅Si₄ viewed along the *b* axis: *B* at $y \sim 0$, 0.5.

The atoms have similar coordinations to those in Sm_5Ge_4 (Smith *et al.*, 1967), with the exception of Si3, which forms a covalent bond with another Si3 at a distance of 2.454 Å, in contrast to Ge3 in Sm_5Ge_4 , where the closest Ge atom (Ge3) is at a distance of 3.706 Å. The same difference between the silicide and the germanide was reported also for the system $Gd_5(Si,Ge)_4$ (Pecharsky & Gschneidner, 1997), and was related to a different magnetic behaviour of the silicide and the germanide.

Experimental

The samples were prepared using a sealed method because of the high vapour pressure of ytterbium. Stoichiometric amounts of the elements were sealed in an evacuated tantalum tube and melted for about one minute by resistance heating.

Crystal data

Yb ₅ Si ₄	Cell parameters from 597
$M_r = 977.54$	reflections
Orthorhombic, Pnma	$\theta = 3.6-33.3^{\circ}$
a = 7.26327 (4) Å	$\mu = 1.83 \text{ mm}^{-1}$
$b = 14.78061 (8) \text{\AA}$	T = 293 K
c = 7.70343 (4) Å	grey
$V = 827.006 (8) \text{ Å}^3$	Specimen shape: cylinder
Z = 4	$50 \times 0.3 \times 0.3$ mm
$D_x = 7.851 \ (2) \ \mathrm{Mg \ m^{-3}}$	Particle morphology: plate-like
Synchrotron radiation, $\lambda = 0.5230$ Å	

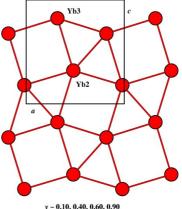


Figure 4

The structural slabs (0y0) of Yb₅Si₄ viewed along the *b* axis: *C* at $y \sim 0.10$, 0.40, 0.60, 0.90.

Data collection

2-axis goniometer diffractometer Specimen mounting: glass capillary Specimen mounted in transmission mode

Refinement

$$\begin{split} R_{\rm p} &= 0.074 \\ R_{\rm wp} &= 0.096 \\ R_{\rm exp} &= 0.075 \\ S &= 1.28 \\ 2\theta_{\rm min} &= 3.600, 2\theta_{\rm max} = 33.333^{\circ} \\ {\rm Increment} \ in 2\theta &= 0.005^{\circ} \\ {\rm Wavelength \ of \ incident \ radiation:} \\ 0.52301 \ {\rm \AA} \end{split}$$

Absorption correction: cylindrical $2\theta_{min} = 2.500, 2\theta_{max} = 33.333^{\circ}$ Increment in $2\theta = 0.005^{\circ}$

Profile function: pseudo-Voigt 915 reflections 46 parameters $(\Delta/\sigma)_{max} = 0.01$ Preferred orientation correction: none

Table 1

Selected geometric parameters (Å).

Yb1-Si2 ⁱ	2.887 (16)	Yb2-Yb3 ^{ix}	3.686 (2)
Yb1-Si1 ⁱⁱ	2.939 (15)	Yb2-Yb3 ^x	3.704 (2)
Yb1-Si1	2.953 (15)	Yb2-Yb2 ^{xi}	3.790 (2)
Yb1-Si3 ⁱⁱⁱ	3.147 (9)	Yb2-Yb3 ^{viii}	3.861 (2)
Yb1-Si2 ^{iv}	3.229 (15)	Yb2-Yb2 ^{xii}	3.937 (2)
Yb1-Yb3 ^v	3.425 (3)	Yb3-Si3 ^{xiii}	2.861 (10)
Yb1-Yb3 ^{vi}	3.462 (3)	Yb3-Si3	2.871 (11)
Yb1-Yb2 ⁱⁱ	3.501 (2)	Yb3-Si2 ^{xiv}	2.879 (12)
Yb1-Yb2	3.538 (2)	Yb3-Si2 ^{xv}	2.898 (12)
Yb2-Si3 ^{vi}	3.020 (12)	Yb3-Si3 ^{xi}	2.918 (11)
Yb2-Si3 ^{vii}	3.059 (11)	Yb3-Si1 ^{vi}	2.947 (11)
Yb2-Si1 ^{iv}	3.114 (10)	Yb3-Yb3 ^{xvi}	3.7838 (19)
Yb2-Si3 ^{viii}	3.123 (11)	Yb3–Yb3 ^{xvii}	3.804 (2)
Yb2-Si1	3.233 (11)	Si1-Si2 ^{xviii}	2.47 (2)
Yb2-Si2 ⁱ	3.263 (10)	Si3-Si3 ^{xix}	2.454 (16)
Yb2-Si3 ^{ix}	3.543 (11)		

Symmetry codes: (i) x - 1, y, z - 1; (ii) $\frac{1}{2} + x, \frac{1}{2} - y, \frac{1}{2} - z$; (iii) $\frac{1}{2} - x, y - \frac{1}{2}, z - \frac{1}{2}$; (iv) $x - \frac{1}{2}, \frac{1}{2} - y, \frac{1}{2} - z$; (v) $1 - x, y - \frac{1}{2}, -z$; (vi) $\frac{1}{2} - x, 1 - y, z - \frac{1}{2}$; (vii) -x, 1 - y, 1 - z; (viii) x, y - 1, z; (ix) $x - \frac{1}{2}, y - 1, \frac{1}{2} - z$; (x) -x, 1 - y, -z; (xi) $\frac{1}{2} + x, y, \frac{1}{2} - z$; (xi) -x, -y, -z; (xiii) $\frac{1}{2} - x, 2 - y, z - \frac{1}{2}$; (xiv) $\frac{3}{2} - x, 1 - y, z - \frac{1}{2}$; (xv) $1 - x, \frac{1}{2} + y, 1 - z$; (xvi) $x, \frac{3}{2} - y, z$; (xvii) $x - \frac{1}{2}, \frac{1}{2} - z$; (xviii) $x - \frac{1}{2}, \frac{1}{2} - y, \frac{3}{2} - z$; (xix) -x, 2 - y, 1 - z.

Three impurities were identified in the sample during the Rietveld refinement: Si (9 wt%), YbSi (5 wt%) and Yb₅Si₃ (1 wt%).

Cell refinement: *FULLPROF*99 (Rodríguez-Carvajal, 1999); program(s) used to refine structure: *FULLPROF*99; molecular graphics: *ATOMS* (Dowty, 1993); software used to prepare material for publication: *WinPLOTR* (Roisnel & Rodríguez-Carvajal, 1998) and *ATOMS*. The authors thank Marcus Neumann (Accelrys) for help with indexing the powder pattern, and the staff of the Swiss– Norwegian beamline (BM1) at the ESRF Grenoble for help with the synchrotron diffraction experiment.

References

Alami-Yadri, K. (1997). Thesis No 2963, University of Geneva, Switzerland.

Dowty, E. (1993). *ATOMS*. Version 2.3. Shape Software, 521 Hidden Valley Road, Kingsport, TN 37663, USA.

Palenzona, A., Manfrinetti, P., Brutti, S. & Balducci, G. (2002). J. Alloys Compd, 348, 100–104.

Pecharsky, V. K. & Gschneidner, K. A. Jr (1997). J. Alloys Compd, 260, 98–106.

Rodríguez-Carvajal, J. (1999). *FULLPROF99 Reference Guide*. Version 0.5. Laboratoire Leon Brillouin (CEA–CNRS), France.

Roisnel, T. & Rodríguez-Carvajal, J. (1998). WinPLOTR Reference Guide. Laboratoire Leon Brillouin (CEA-CNRS), France.

Smith, G. S., Johnson, Q. & Tharp, A. G. (1967). Acta Cryst. 22, 269-272.